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Abstract: 

The Clausius inequality relation of entropy change and Boltzmann expression of entropy  
are used to derive three statistical distributions, partition function as well as Helmholtz energy, Gibbs energy 
and chemical potential as equilibrium properties of the system. The chemical potential of all particles of the 
system are equal irrespective of their occupied energy level. The derivation of statistical distributions avoids 
the calculus of variation and Lagrange undetermined multipliers which are unavoidable to derive partition 
function and three statistical distributions using the statistical thermodynamics.  
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1. Introduction 

 

The Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistical distribution laws, partition function 

appear to have a little common area of overlapping with the chemical equilibrium, chemical potential, 

Helmholtz and Gibbs energy. The first group of topics is mostly important to a student of physics while the 

second group is very important to a student of chemistry. However, all of the topics of first group and second 

group have a common origin, the law of entropy change. In this discussion, we shall try to find out the role of 

entropy change in all these topics of diverse field. The entropy itself is not very well understood as a real 

physical property of a system but mathematically the Boltzmann relation of entropy serves very good purpose 

of calculating entropy change and this will serve most of our purpose.  

 

2. Entropy Change 

  

 The Clausius inequality relation of the change of entropy S is given by 

  ΔS ≥ q/T      (1) 

where q is the heat absorbed by system at temperature T. The ΔS is greater than q/T if process of  

heat absorption is irreversible and it is equal to ΔS when the process is reversible. The first law of  

thermodynamics expresses the increase of the internal energy ΔE of the closed system (where the number of 

particles of the system is constant) as 

ΔE = q + w      (2) 
here q is the heat absorbed and w is the work done on the system. The w is the sum of pressure-volume  
work wpv, and the work other than pressure-volume type work wnon pv, done on the system. In case Δv = 0 and  
nonp-v work is negligible, the work (w=0) and in a reversible process of heat absorption,  

ΔE = q= T ΔS           (3)       
Let our system contains N indistinguishable and noninteracting particles confined in volume V at temperature T 
with total energy E such as, 
 N= ∑r nr; E= ∑r nrꜫr.      (4) 
where nr is the number of particles, each with energy ꜫr in the r th energy level at equilibrium. If gr is the number 
of degeneracies of the r th energy level, the distinct arrangements1,2a Ω for correct Boltzmann Ω(MB), Bose- 
Einstein Ω(BE) and Fermi-Dirac Ω(FD) counting’s are as follows, 
 Ω (MB)= ∏r gr

nr/nr!     (5) 
 Ω (BE)= ∏r (nr +gr-1)!/[nr!(gr -1)!]    (6) 
  Ω (FD)= ∏r gr!/[nr!(gr - nr)!]     (7) 
The Boltzmann expression of entropy Seq for each distribution at equilibrium of the system is, 

 Seq = k ln Ω       (8) 
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here k is the Boltzmann constant. As we know the equilibrium state of the system is the state where distribution 
of particles in different energy level remains constant under unchanged macroscopic conditions such as 
pressure, volume and temperature.  
 
 At equilibrium, the expression for entropy of Maxwell-Boltzmann distribution is  
 Seq = k ln ∏r gr

nr/nr!     (9) 
If a particle is transferred from i th to j th energy level reversibly without performing any work, the change of 
entropy from Seq to Sij becomes 
 ∆S(MB)= Sij -Seq = k ln ∏r≠I,j gr

nr/nr!.[ gi ni-1/(ni-1)!]. [ gj nj+1/(nj+1)!]- k ln ∏r gr
nr/nr! 

              =k ln (ni /gi) (gj/nj )[nj/( nj +1)]    (10) 
For the same condition of the transfer of a particle from i th to j th energy level, the entropy change of Bose-
Einstein and Fermi-Dirac distributions are, 
  ∆S(BE) = k ln ∏r≠I,j (nr +gr-1)!/[nr!(gr -1)!]. [(ni-1) +gi-1]!/(ni-1)!(gi -1)!. [(nj +1) +gj-1]!/[(nj+1)!(gj -1)!] 
   -k ln∏r (nr +gr-1)!/[nr!(gr -1)!]  

= k ln ni /(ni +gi-1). (nj  +gj )/ (nj+1)   (11) 
∆S(FD) = k∏r≠I,j gr!/[nr!(gr - nr)!]. gi!/[(ni-1)!.(gi -( ni -1)]!. gj!/[(nj +1)!(gj -( nj +1))!] - k ln∏r gr!/[nr!(gr – nr)!] 
             = k ln ni/( gi - ni+1 ).(gj - nj )/ (nj +1)   (12) 

The ∆S from Clausius relation of entropy change from relation (3) due to transfer of a particle from i th to j th 
energy level reversibly without performing any work is, 
 ∆S = (ꜫj - ꜫi)/T      (13) 
Equating entropy change (13) with relations (10) to (12), and for (10) 

 k ln (ni /gi) (gj/nj )[nj/( nj +1)] = (ꜫj - ꜫi)/T 
 k ln (gj/nj ) + k ln[nj/( nj +1)] - ꜫj /T  = k ln (gi/ ni) - ꜫi/T  (14) 

as nj >>1, the k ln[nj/( nj +1)] becomes negligibly small and we get, 
  ln (gj/nj ) - ꜫj /kT  =  ln (gi/ ni) - ꜫi/kT    (15) 
The quantity of j th energy level is independent of that of i th energy level, and as i and j are dummy indices so 
this condition holds for all particles in all energy levels, and quantity of each side is a constant independent of 
energy levels. 
   ln (gi/ ni) - ꜫi/kT =aMB     (16)  
 (gi/ ni) = exp (aMB+ ꜫi/kT)      
Rearranging, ni = exp (-aMB) gi exp (- ꜫi/kT)    (17) 

The relation (17) is Maxwell-Boltzmann distribution showing the number of particles in i th energy 
level at temperature T. 
 
From relation (11) and (13), 
 k ln ni /(ni +gi-1). (nj +gj )/ (nj+1) = (ꜫj - ꜫi)/T   (18) 
as earlier ln (ni +gi-1)/ ni - ꜫi/kT = ln (nj +gj )/ (nj+1) - ꜫj /kT  (19) 
Using ni & ni >>1, and the quantity of j th energy level in the righthand side is equal and independent of i th 
energy level of the lefthand side of the above equation, the i and j are dummy indices so quantity of each side 
is a constant of energy level. This condition holds for all particles in all energy level following Bose-Einstein 
distribution or Bosons. From (19),  
 ln (ni +gi)/ ni = aBE+ ꜫi/kT 
 (ni +gi)/ ni =exp (aBE+ ꜫi/kT) 
Rearranging, ni = gi/[ exp (aBE+ ꜫi/kT) -1]    (20) 

The relation (20) is Bose-Einstein distribution showing the number of particles or bosons in i th energy 
level at temperature T. 
 
From relation (12) and (13), 
 k ln ni/( gi - ni +1).(gj - nj )/ (nj +1)= (ꜫj - ꜫi)/T   (21) 
Using same arguments for Bose- Einstein distribution, we get 
  (gi - ni )/ ni =exp(aFD+ ꜫi/T) 
Rearranging, ni = gi/[ exp (aFD+ ꜫi/kT) +1]     (22) 

The relation (22) is Fermi-Dirac distribution showing the number of particles or fermions in i th energy 
level at temperature T. 
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3. Partition function2b  

 
From relation (17), we get  
ni = exp (-aMB) gi exp (- ꜫi/kT) 
N = exp (-aMB) ∑i gi exp (- ꜫi/kT) 
exp (-aMB) = N/z 
z= ∑i giexp (- ꜫi/kT)     (23) 

where z is called the partition function of a particle and Maxwell-Boltzmann distribution is expressed in terms 
of partition function is, 
 ni = (N/z) gi exp (- ꜫi/kT)     (24) 
The fraction of the system in i th energy state is 
 ni /N = gi exp (- ꜫi/kT)/z     (25) 
The average energy of a particle using (24) is 
    <ꜫ> =∑i ni ꜫi /N =∑i ꜫi gi exp (- ꜫi/kT)/z  
         = -(1/z) ∂z/∂β;  here (β =1/kT)   (26) 

 
 
 
4. Equilibrium condition 
  

From relation (9) 
 Seq = k ln ∏r gr

nr/nr! 
With Stirling’s approximation ln n! = n ln n -n = n ln (n/e), the above expression becomes 
  Seq = k∑r nr ln (gre/nr)     (27) 
 So, the entropy of a particle in i th energy level is 
 Si = k ln (gi e/ni)      (28) 
On adding (k ln e) to both sides of the equation (15), to express the entropy of i th and j th particles, we get 

  ꜫj - kT ln (gje/nj ) = ꜫi -kT ln (gie/ ni)    (29)     
As argument given to arrive relation (16), we get  
 ꜫi - kT ln (gie/ni) = aH      (30)     
 ꜫi -TSi = aH      (31) 
Which is valid for all particles in all energy levels. Here aH is the Helmholtz energy of a particle in i th energy level, 
and it is same for all particles irrespective of the energy level they belong to. Hence it is the equilibrium condition 
of the system. 
 
 

5. Helmholtz energy, Gibbs energy and chemical potential2c 
 
 On adding aH of equation (30) for all N particles of the system,  
 NaH =∑i ni ꜫi - kT∑i ni ln (gie/ni) 
         = E - T Seq =A      (32)     
Here A is the Helmholtz energy of the system. 
The change of Helmholtz energy per particle of the system is the chemical potential of a particle in the 
system. 

(δA/ δN)T,V  
    = (δA/ δnr)T,V .(δnr/ δN)T,V 
(as (δnr/ δN)T,V is unity),  
   = δ/ δnr (∑r nr εr – ∑r nr kT ln (gr e/ nr))T,V 

    = εr – kT ln (gr / nr)=– kT ln [gr exp(-εr/kT)]/ nr     
    = μ       (33) 
Using relation (25), μ = – kT ln z/N 
The μ is the chemical potential of a particle. 
Hence, at constant temperature and volume μ (per particle) = μ0 + kT ln N  
Generally, the chemical potential is expressed in terms of moles, so 
 μ (per mole) = μ0 + RT ln n (in moles)   (34)   
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The relation (32) becomes, 
 A= ∑r nr ꜫr - kT∑r nr ln (gr/nr) - kT∑r nr ln e 
   = ∑r nr μ - NkT   
Using ideal gas relation (PV = NkT), we get 
 A + PV = Nμ = G       (35) 
The G is the Gibbs energy of the system. 

A = ∑rnr aH 
    = ∑r nr (εr – kT ln (gr e/ nr)) 
    = – kT ∑r nr ln (gre exp (- εr/kT) / nr)  
    = – kT ∑r nr ln e (z/N) 
    = – kT N ln e (z/N)       
                   = – kT ln (zN/N!)      (36) 
The Helmholtz energy of the system containing N indistinguishable particle. 
 
6. Entropy maximum at equilibrium 
  

At equilibrium the system remains unchanged unless any of the macroscopic conditions such as the 
volume, temperature, energy and number of particles are changed. The entropy of the system depends on the 
distribution of particles over the energy levels which remains constant at equilibrium. We have not assumed the 
entropy at equilibrium is the maximum which is used as the basis of conventional approach of the derivation of 
statistical distributions, partition functions etc. Let us check whether the entropy at equilibrium used in our 
derivation is the maximum or not. 
 If only the distribution at equilibrium is perturbed by transferring one particle from ith to jth 
energy level and another particle from sth to tth energy level of the system at constant temperature 
 and constant volume and to keep the internal energy E remain constant, we must have  
 (εj – εi) + (εt – εs) = 0     (37) 
The change of the entropy of the deviated state of the system following the above transfer of particles 
using relation (10) is, 

ΔS = (S’ – Seq) 
Expressing in terms of entropy of individual particles, we get 

  ΔS = k ln (gj e/nj) – k ln (gi e/ni) + k ln (nj/(nj +1) 
       + k ln (gt e/nt) – k ln (gs e/ns) + k ln (nt/(nt +1) 

Using condition (29), we get 
ΔS = k ln (nj/(nj +1) + k ln (nt/(nt +1) 
      < 0       (38)     

The logarithm of fractions (nj/(nj +1) and (nt/(nt +1) are negative, so any deviation from equilibrium 
Condition, the entropy becomes less than equilibrium entropy. This condition shows the entropy is 
the maximum at equilibrium. 
 
7. Conclusion 
 
 The Clausius inequality relation of entropy change and Boltzmann expression of entropy are 
enough to develop the three statistical distributions from their respective counting of distinct  
arrangements or states ΩMB, ΩBE and ΩFD of the system. The partition function and three statistical distributions 
arrive automatically in the derivation avoiding the calculus of variation and Lagrange undetermined multipliers 
commonly used for their derivation in statistical thermodynamics. The Helmholtz and Gibbs energies and 
chemical potential are shown as the equilibrium properties of the system. We hope this derivation using the 
role of entropy change and the same, using Clausius inequality relation are useful to derive all these relation 
without any rigorous involvement of calculus of variation. 
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